

Convolutive Block-Matching Segmentation Algorithm with Application to Music Structure Analysis

A. Marmoret^{1,2}, J.E. Cohen³, F. Bimbot¹

 $^{-1}$ Univ Rennes, Inria, CNRS, IRISA, France, $^{-2}$ IMT Atlantique, Lab-STICC, Brest, France, ³ CNRS, CREATIS, Villeurbanne France axel.marmoret@imt-atlantique.fr

Poster summary

This poster presents an algorithm aiming at segmenting autosimilarity matrices, called Convolutive Block-Matching (CBM) algorithm.

The CBM algorithm aims at framing blocks of high self-similarity in an autosimilarity matrix, *i.e.* homogeneous regions.

The CBM is introduced for the task of Music Structure Analysis (MSA), by segmenting songs sampled at the barscale.

The proposed algorithm achieves a level of performance competitive to that of supervised State-of-the-Art methods on 3 among 4 metrics while being unsupervised.

(1)

(2)

(3)

IMT Atlantique

Ecole Mines-Télécom

Bretagne-Pays de la Loire

Barwise processing

Figure 1. The spectrogram is cut at each downbeat, and the information contained in each bar is vectorized. This results in a **Barwise TF matrix**, of size $B \times TF$.

Autosimilarity matrix

An autosimilarity matrix $A(X) \in \mathbb{R}^{B \times B}$ contains the similarity between all pair of bars:

Figure 2. The spectrogram is cut on each downbeat, and the information contained in each bar is vectorized. This results in a **Barwise TF matrix**, of size $B \times TF$.

Three similarity functions are studied here:

$$s(X_i, X_j) = \begin{cases} \text{Cosine similarity} &: \quad \frac{\langle X_i, X_j \rangle}{\|X_i\|_2 \|X_j\|_2} \\ \text{Covariance similarity} &: \quad \frac{\langle X_i - \bar{x}, X_j - \bar{x} \rangle}{\|X_i - \bar{x}\|_2 \|X_j - \bar{x}\|_2} \end{cases}$$

 $u(S_i) = \frac{1}{\nu |S_i|} \sum_{k=1}^{|S_i|} \sum_{l=1}^{|S_i|} A_{S_i}(X)_{kl} K_{kl} - \lambda p(|S_i|).$ (4)**Convolution kernels (block-weighting)** Penalty function $\begin{array}{cc} 0 & \text{if } |S_i| = 8 \end{array}$ ■ 1 □ 0 $p(|S_i|) = \begin{cases} \frac{1}{4} & \text{else if } |S_i| \equiv 0 \pmod{4} \\ \frac{1}{2} & \text{else if } |S_i| \equiv 0 \pmod{2} \\ 1 & \text{otherwise} \end{cases}$ otherwise (a) Full kernel (b) 3-band (c) 7-band (5)Figure 4. Different kernels, of size 10

Quantitative results

Results according to parameters of the CBM:

Figure 5. Results according to the similarity function and convolution kernel. F_{3s} on the RWC Pop dataset.

Figure 3. Cosine, Covariance and RBF autosimilarities on the song POP01 from RWC Pop.

Algorithm principles

Notations:

• $Z^*_{[b_i:b_j]}$: optimal segmentation (set of boundaries) between bars b_i and b_j . • u(): score function (for a segment or a set of segments).

Framed as a Longest-path in a graph (directed and acyclic)

Best results, compared with State-of-the-Art algorithms (SOTA) [1, 2, 3, 4, 5, 6, 7]

Open-source toolbox

https://gitlab.imt-atlantique.fr/a23marmo/autosimilarity_segmentation/-/tree/WASPAA23

Take home messages

- 1. A new segmentation algorithm!
 - High performances, without supervision (still necessitates downbeat estimation)
 - Low-complexity and easily customizable,
- 2. May be used with any representation-learning algorithm (e.g. your favourite neural network).
- 3. Barwise sampling participates in boosting the performance of music structure estimation (more experiments in the future detailed version).

Perspectives (contact me! :))

1. Studying (or learning) different types of kernels,

Formally, this is written as an optimization problem, depending on the function u:

$$Z^* = \underset{Z \in \Theta}{\operatorname{arg\,max}} \sum_{i=1}^{E-1} u(S_i).$$

- 2. Improving the penalty function (empirical),
- 3. Replace the simple similarity functions with more complex ones (e.g. learned by means of a neural network).

References

- [1] J. Foote, "Automatic audio segmentation using a measure of audio novelty," in IEEE International Conference on Multimedia and Expo. Proceedings Latest Advances in the Fast Changing World of Multimedia, pp. 452–455, IEEE, 2000.
- [2] B. McFee and D. Ellis, "Analyzing song structure with spectral clustering," in International Society for Music Information Retrieval Conference (ISMIR), pp. 405–410, 2014.
- [3] J. Serra, M. Müller, P. Grosche, and J. L. Arcos, "Unsupervised music structure annotation by time series structure features and segment similarity," IEEE Transactions on Multimedia, vol. 16, no. 5, pp. 1229–1240, 2014.
- [4] M. C. McCallum, "Unsupervised learning of deep features for music segmentation," in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 346–350, IEEE, 2019.
- [5] T. Grill and J. Schlüter, "Music boundary detection using neural networks on combined features and two-level annotations," in International Society for Music Information Retrieval Conference (ISMIR), pp. 531–537, 2015.
- [6] J.-C. Wang, J. B. Smith, W.-T. Lu, and X. Song, "Supervised metric learning for music structure feature," in International Society for Music Information Retrieval Conference (ISMIR), pp. 730-737, 2021.
 - [7] J. Salamon, O. Nieto, and N. J. Bryan, "Deep embeddings and section fusion improve music segmentation," in International Society for Music Information Retrieval Conference (ISMIR), pp. 594–601, 2021.

2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

October 22-25, 2023, New Paltz, NY.